3.2.30 \(\int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\) [130]

3.2.30.1 Optimal result
3.2.30.2 Mathematica [A] (verified)
3.2.30.3 Rubi [A] (verified)
3.2.30.4 Maple [B] (verified)
3.2.30.5 Fricas [A] (verification not implemented)
3.2.30.6 Sympy [F]
3.2.30.7 Maxima [B] (verification not implemented)
3.2.30.8 Giac [F]
3.2.30.9 Mupad [F(-1)]

3.2.30.1 Optimal result

Integrand size = 25, antiderivative size = 105 \[ \int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {2 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^2 (3 A+4 B) \tan (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a B \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{3 d} \]

output
2*a^(3/2)*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2/3*a^2*(3 
*A+4*B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/3*a*B*(a+a*sec(d*x+c))^(1/2) 
*tan(d*x+c)/d
 
3.2.30.2 Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.97 \[ \int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \sqrt {a (1+\sec (c+d x))} \left (3 \sqrt {2} A \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {3}{2}}(c+d x)+2 (B+(3 A+5 B) \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{3 d} \]

input
Integrate[(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]
 
output
(a*Sec[(c + d*x)/2]*Sec[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*(3*Sqrt[2]*A*A 
rcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^(3/2) + 2*(B + (3*A + 5*B)*Co 
s[c + d*x])*Sin[(c + d*x)/2]))/(3*d)
 
3.2.30.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.03, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4405, 27, 3042, 4403, 3042, 4261, 216, 4279}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sec (c+d x)+a)^{3/2} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4405

\(\displaystyle \frac {2}{3} \int \frac {1}{2} \sqrt {\sec (c+d x) a+a} (3 a A+a (3 A+4 B) \sec (c+d x))dx+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \sqrt {\sec (c+d x) a+a} (3 a A+a (3 A+4 B) \sec (c+d x))dx+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 a A+a (3 A+4 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4403

\(\displaystyle \frac {1}{3} \left (a (3 A+4 B) \int \sec (c+d x) \sqrt {\sec (c+d x) a+a}dx+3 a A \int \sqrt {\sec (c+d x) a+a}dx\right )+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a (3 A+4 B) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+3 a A \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx\right )+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {1}{3} \left (a (3 A+4 B) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-\frac {6 a^2 A \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{3} \left (a (3 A+4 B) \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {6 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}\right )+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 4279

\(\displaystyle \frac {1}{3} \left (\frac {6 a^{3/2} A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 (3 A+4 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a B \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}\)

input
Int[(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]
 
output
(2*a*B*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d) + ((6*a^(3/2)*A*ArcTan 
[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*(3*A + 4*B)* 
Tan[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/3
 

3.2.30.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4279
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*b*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]])), x] /; Free 
Q[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4403
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[c   Int[Sqrt[a + b*Csc[e + f*x]], x], x] + Si 
mp[d   Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4405
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d 
_.) + (c_)), x_Symbol] :> Simp[(-b)*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m 
 - 1)/(f*m)), x] + Simp[1/m   Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m + 
 (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2 
*m]
 
3.2.30.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(205\) vs. \(2(91)=182\).

Time = 1.65 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.96

method result size
default \(\frac {2 A a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+\sin \left (d x +c \right )\right )}{d \left (\cos \left (d x +c \right )+1\right )}+\frac {2 B a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (5 \sin \left (d x +c \right )+\tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(206\)
parts \(\frac {2 A a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+\sin \left (d x +c \right )\right )}{d \left (\cos \left (d x +c \right )+1\right )}+\frac {2 B a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (5 \sin \left (d x +c \right )+\tan \left (d x +c \right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(206\)

input
int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x,method=_RETURNVERBOSE)
 
output
2*A/d*a*(a*(1+sec(d*x+c)))^(1/2)*((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arcta 
nh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c 
)+(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-c 
os(d*x+c)/(cos(d*x+c)+1))^(1/2))+sin(d*x+c))/(cos(d*x+c)+1)+2/3*B/d*a*(a*( 
1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)*(5*sin(d*x+c)+tan(d*x+c))
 
3.2.30.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 314, normalized size of antiderivative = 2.99 \[ \int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\left [\frac {3 \, {\left (A a \cos \left (d x + c\right )^{2} + A a \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left ({\left (3 \, A + 5 \, B\right )} a \cos \left (d x + c\right ) + B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac {2 \, {\left (3 \, {\left (A a \cos \left (d x + c\right )^{2} + A a \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left ({\left (3 \, A + 5 \, B\right )} a \cos \left (d x + c\right ) + B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")
 
output
[1/3*(3*(A*a*cos(d*x + c)^2 + A*a*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x 
+ c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*s 
in(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*((3*A + 5*B)*a*c 
os(d*x + c) + B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/( 
d*cos(d*x + c)^2 + d*cos(d*x + c)), -2/3*(3*(A*a*cos(d*x + c)^2 + A*a*cos( 
d*x + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + 
 c)/(sqrt(a)*sin(d*x + c))) - ((3*A + 5*B)*a*cos(d*x + c) + B*a)*sqrt((a*c 
os(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x 
 + c))]
 
3.2.30.6 Sympy [F]

\[ \int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \sec {\left (c + d x \right )}\right )\, dx \]

input
integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)
 
output
Integral((a*(sec(c + d*x) + 1))**(3/2)*(A + B*sec(c + d*x)), x)
 
3.2.30.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 998 vs. \(2 (91) = 182\).

Time = 0.41 (sec) , antiderivative size = 998, normalized size of antiderivative = 9.50 \[ \int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Too large to display} \]

input
integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")
 
output
1/2*((a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2 
*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 
 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) 
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c) 
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 
cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2* 
c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) 
+ sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^ 
2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2 
*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c),...
 
3.2.30.8 Giac [F]

\[ \int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="giac")
 
output
sage0*x
 
3.2.30.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

input
int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2),x)
 
output
int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2), x)